
PVS Survival Hints

by

Ricky W. Butler

Mail Stop 130
NASA Langley Research Center
Hampton, Virginia 23681-2199

email: R.W.Butler@nasa.gov
phone: (757) 864-6198
fax: (757) 864-4234

web: http://shemesh.larc.nasa.gov/fm/

October 12, 2012

Stopping PVS Prover and Restore

If you have a run-away prover command (e.g. GRIND), you can type
C-c C-c (while in the *pvs* buffer), which will drop you into Lisp:

Error: Received signal number 2 (Keyboard interrupt)

[condition type: INTERRUPT-SIGNAL]

Restart actions (select using :continue):

0: continue computation

[1c] <rcl>

At the <rcl> prompt, type (restore) to get back to the previous
sequent.

If PVS has lost its mind, type M-x reset-pvs. Note. During garbage
collection, this command will not engage immediately.

Managing Proofs

• Corresponding to each .pvs file, there is a .prf file that holds the
proofs.

• Put cursor on a particular lemma and type M-x edit-proof to see
the stored proof. A buffer entitled Proof will be displayed. The
buffer will contain something like:

("" (SKOSIMP*)

(EXPAND "add_flight")

(LIFT-IF)

(EXPAND "del_flight")

(PROPAX))

• You can change the proof and save it by issuing C-C C-i to the
Proof buffer.

Managing Proofs (cont.)

• WARNING: If you rename a lemma, the corresponding proof will disappear.

• The system will save the proof in a file called orphaned-proofs.prf

• The command M-x show-orphaned-proofs will bring up a buffer entitled Proofs

which looks something like

File Theory Formula

---- ------ -------

flight_sched3 flight_sched3 u0_TCC1

extra extra dumb_but_instructive

If you put the cursor on a particular formula name in the buffer and type s, the
proof will be displayed in a buffer named Proof.

If you manually edit a .prf file, the PVS system does NOT automatically load it for
you. You have to issue a M-x install-pvs-proof-file to get these changes loaded by
PVS.

To display all of the proofs in the current file, use M-x show-proofs-pvs-file

To display ALL proofs including those in IMPORTED theories,
use M-x show-proofs-importchain

Changing Variable Names

The best way to change variable names in PVS is to

1. Create a “top.pvs” file that imports directly or indirectly all of the
theories you are working on.

2. Issue the M-x dump-pvs-files command in your top.pvs theory.

3. Make changes in the dump file and save it.

4. Exit PVS.

5. Issue Unix command rm pvsbin/*.bin to your directory. (This
shouldn’t be necessary, but there have been bugs with .bin in the
past, and I still do this just in case.)

6. Restart PVS.

7. Issue M-x undump-pvs-files.

8. Go to top.pvs and retypecheck.

Note. The M-x dump-pvs-files command can be used to prepare bug
reports to send to SRI.

Note. The top.pvs theory is a good place to issue M-x pri

(or M-x prove-importchain) to reprove all of your stuff.

Stepping Through a Proof

You can step through a proof one command at a time, by issuing
M-x step-proof on a lemma.

The window is split into two parts, one containing the proof (named
Proof) and the other containing the *pvs* proof buffer.

The command TAB 1 executes one proof step.

The command ESC n TAB 1 executes n proof steps.

Repositioning the cursor in the Proof buffer changes which command
will execute next.

Therefore, use C-x o to switch between windows rather than clicking.

Command Abbreviations

TAB * (skosimp*)

TAB a (assert)

TAB c (case) – prompts for expression

TAB e (expand) – expands identifier at cursor

TAB E (apply-extensionality)

TAB f (flatten)

TAB g (ground)

TAB G (grind)

TAB i (inst) – prompts for expression

TAB ? (inst?)

TAB l (lift-if)

TAB s (split)

TAB p (prop)

TAB r (replace)

TAB u (undo)y

Overcoming Some Common Proof Problems

• If you find yourself proving the same result over and over:

– introduce a case statement early: (case "<same-result>")

– add a lemma before this theorem

• If you are seeing a plethora of TCCs generated during your proofs:

– Look to see if there are some JUDGEMENTS you can add to your
specification

– Consider adding a new lemma that you can serve as an
auto-rewrite. This can be automatically turned on by adding
AUTO-REWRITE "<lemma>" to your theory.

• If you lost in the details (evidence: massive sequents, dozens of
unproved subgoals).

– Go get a cup of coffee

– Walk around the building and think about the big picture

– Come back and scratch out a new informal proof on paper

Adding Declarations Without Having To Re-Typecheck

If you would like to add a declaration without causing the system to
retypecheck everthing, use M-x add-declaration

This is useful when you are in a proof and you would like to add a
lemma.

This is also useful when you have a large collection of theories and
many of them import some fundamental theories.

You can add some stuff to the fundamental theories without having to
re-typecheck everything that uses it.

This command opens up a buffer. You type in the new stuff and then
issue C-c C-c.

The command M-x modify-declaration works similarly.

Proof Information Commands

You are baffled because

{-1} lovely_predicate(x!1 - y!1, x!1 + y!1)

|-------

{1} lovely_predicate(x!1 - y!1, x!1 + y!1)

is not discharged by (ASSERT).

Issue command M-x show-expanded-sequent and you see

{-1} thry1[nat].lovely_predicate(x!1 - y!1, x!1 + y!1)

|-------

{1} thry2[nat].lovely_predicate(x!1 - y!1, x!1 + y!1)

Because of the extensive overloading that is supported in PVS, it is
sometimes necessary to see the fully expanded names to help you
disambiguate formulas in a sequent.

Hidden Formulas

• The PVS prover command (hide -1) removes a formula from a
sequent.

• This helps reduce clutter.

• To see all of the hidden formulas, type M-x show-hidden-formulas.
The formulas will be displayed in a buffer named Hidden.

• The prover command (reveal x) will return a formula to the
sequent. Note. x is the number of the formula in the Hidden buffer
and not its original number.

The new LABEL command can be used prior to HIDING to facilitate the
subsequent REVEAL command.:

(LABEL EASY -3)

(HIDE EASY)

.

.

(REVEAL EASY)

View Commands

• The command M-x show-tccs dispays the TCCs associated with a theory.

• The command M-x ppe (or M-x pretty-print-expanded) can be used to see all of
the TCCs as well as specially generated axioms. For example, M-x ppe on

ppefun: THEORY

BEGIN

letters: TYPE = {a,b,c}

END ppefun

will produce

ppefun: THEORY

BEGIN

letters: TYPE = {a, b, c}

letters: TYPE

a?, b?, c?: [letters -> boolean]

a: (a?)

b: (b?)

c: (c?)

ord(x: letters): upto(2) = CASES x OF a: 0, b: 1, c: 2 ENDCASES

M-x ppe continued

letters_inclusive: AXIOM

(FORALL (letters_var: letters):

a?(letters_var) OR b?(letters_var) OR c?(letters_var));

letters_induction: AXIOM

(FORALL (p: [letters -> boolean]):

p(a) AND p(b) AND p(c)

IMPLIES (FORALL (letters_var: letters): p(letters_var)));

END ppefun

• the<type>_inclusive axiom must be used in proofs via a LEMMA

command.

• the decision procedures automatically handle the disjointness
property.

• the <type>_induction axiom isn’t real useful.

Proof Status Commands

The command M-x spt (abbreviation for M-x status-proof-theory):

Proof summary for theory flight_sched3

u0_TCC1..unfinished

putative2..proved - incomplete

SchedAdd...proved - incomplete

DelAdd...proved - incomplete

AddChange..proved - incomplete

Theory totals: 5 formulas, 5 attempted, 4 succeeded.

untried Proof not yet attempted.
unfinished Proof attempted but not finished.
proved-incomplete The proof is done but depends upon other unproven lemmas.
proved-complete The proof is done and all lemmas it depends upon are also proved.

Proof Status Commands (cont.)

The command M-x spc (abbreviation for M-x status-proofchain):

flight_sched3.AddChange has been PROVED.

The proof chain for AddChange is INCOMPLETE.

It depends on the following unproved conjectures:

flight_sched3.u0_TCC1

AddChange depends on the following proved theorems:

if_def.IF_TCC1

AddChange depends on the following definitions:

flight_sched3.change_flight

flight_sched3.add_flight

flight_sched3.scheduled?

notequal./=

Save Context

The command M-x sc saves the context in the file .pvscontext.

Proofs are not saved by this, they are automatically saved everytime
you perform a M-x pr.

This saves the status of proofs and .bin files, which speeds up
typechecking.

This command is issued for you when you exit PVS.

Issuing this command periodically, protects you when PVS crashes.

This is usually only important when you are working on large projects.

Change Context

If you want to work in a different directory without exiting PVS:

M-x cc

If you want to save the status of proofs in case PVS crashes:

M-x sc

But periodically one should

rm pvsbin/*.bin

rm .pvscontext

and M-x spi from top theory.

When PVS Is Acting Very Wierd 1

• Sometimes the incremental typechecker loses its mind.

• This is manifested by strange error messages or crashing into Lisp
during typechecking.

• Try:

C-u M-x tc

• This forces a complete re-typecheck (i.e. it does not use any info
from previous typechecks).

When PVS Is Acting Very Wierd 2

When PVS is acting very wierd, try

1. Exit PVS

2. rm pvsbin/*.bin

3. rm .pvscontext

4. Restart PVS

There are still some latent bugs that are associated with restoring
typecheck info from .bin files after you make changes deep down in a
specification. This works around that problem.

Sending Bug Reports to SRI:

Send pvs-dump to pvs-bugs@csl.sri.com

Check existing bugs at:
http://pvs.csl.sri.com/cgi-bin/pvs/pvs-bug-list/

X Windows Commands

The commands M-x x-show-proof can be used to display a proof in a
graphical tree structure:

(skosimp*)

(expand "add_flight")

(lift-if)

(expand "change_flight")

(lift-if)

(expand "scheduled?")

(propax)

Prelude Commands

• The command M-x vpf (or M-x view-prelude-library can be used
to examine the PVS prelude.

• The command M-x load-prelude-library can be used to extend the
PVS prelude with the contents of another directory.

Help Commands

The command help-pvs or C-c h yields

PVS System Command List

--------------------------------Exiting PVS-----------------------------------

suspend-pvs (C-x C-z) Suspend PVS

exit-pvs (C-x C-c) Terminate the PVS session

------------------------------Getting Help------------------------------------

help-pvs, pvs-help (C-c h) - Display help for the PVS system commands

help-pvs-language, pvs-help-language (C-c C-h l)

- Display help for the PVS language

------------------------Parsing and Typechecking------------------------------

With an argument, these will force reparsing/retypechecking.

typecheck, tc (C-c t) Typecheck the PVS file in the current buffer

typecheck-prove, tcp Typecheck the PVS file in the current buffer,

and attempts to prove the TCCs

-----------------------Prover Invocation Commands-----------------------------

prove, pr (C-c p) Prove formula pointed to by cursor

...

Help Commands (cont).

The command help-pvs-prover or C-c C-h p yields:

--

The rules (in alphabetical order) are:

(APPLY STRATEGY &OPTIONAL COMMENT):

Applies STRATEGY as if it were a rule, and prints COMMENT string.

This is the basic way of converting a glass-box strategy into an

atomic step so that internal execution of the strategy is hidden

and only the resulting subgoals are returned. E.g.,

(apply (then (skosimp*)(flatten)(inst?))

"Skolemizing, flattening, and instantiating").

(AUTO-REWRITE &REST NAMES):

Installs automatic rewrite rules with given NAMES.

The rewrites are applied by the ASSERT and DO-REWRITE commands.

Each entry in the list NAMES is either an antecedent FNUM or

names a definition, assumption or

lemma/theorem/formula/proposition/conjecture, or a list of such

to indicate always-rewrites (as explained below).

In (AUTO-REWRITE A (B C) D (E F)), B, C, E, and F are always-rewrites.

Rewrites only take effect if relevant conditions and TCCs simplify to T.

If there is an IF or CASES at the outermost part of the

righthand-side, then it is treated as a condition except in the

case of an always-rewrite. E.g.,

(auto-rewrite "assoc" ("delete" "union") -3 (-4 -5))

...

Help Commands (cont.)

The command help-pvs-prover-emacs or C-c C-h e yields

PVS prover command Key Comments

------------------ --- --------

Any Command TAB Prompts for command name

apply-extensionality E Prompts for formula number

assert a

auto-rewrite A Uses formula at point, or prompts

auto-rewrite-theory C-a Prompts for theory

bddsimp B

beta b Prompts for formula number

case c Prompts for expression

case-replace C Prompts for expression

do-rewrite D Prompts for formula number

expand e Expand definition at point

flatten f

grind G

ground g

hide C-h Prompts for formula number

iff F Prompts for formula number

induct I Prompts for variable name

inst i Prompts for formula number and expressions

inst? ? Prompts for formula number, additional arguments

lemma L Prompts for lemma name

lift-if l Prompts for formula number

...

Retrieving Previous Prover Commands

• When cursor is next to Rule?, you can cycle back through previously
entered proof commands by repeatedly typing M-s

Rule? (HIDE -2 -4 -6 -7 -8)

Rule? (ASSERT)

Rule? (LEMMA "lub_int")

Rule? (LEMMA "axiom_of_archimedes")

• If you type in the first few letters of a command before typing the
M-s you will cycle back through the commands that match these
letters. For example

Rule? (lem

The type M-s repeatedly you will get

Rule? (LEMMA "lub_int")

Rule? (LEMMA "axiom_of_archimedes")

Rule? (LEMMA "mother_of_all_theorems")

Rule? (LEMMA "existence_of_Atlantis")

A Little Example

Agh: THEORY

BEGIN

x: VAR posreal

y: VAR real

sqrt(x: posreal): real

sqrt_ax: AXIOM sqrt(x) = y IFF y*y = x

goodness_me: THEOREM FALSE

END Agh

A Little Example(cont)

goodness_me :

|-------

{1} FALSE

Rule? (LEMMA "sqrt_ax")

{-1} FORALL (x, y: real): sqrt(x) = y IFF y * y = x

|-------

Rule? (INST-CP -1 "4" "2")

[-1] FORALL (x, y: real): sqrt(x) = y IFF y * y = x

{-2} sqrt(4) = 2 IFF 2 * 2 = 4

|-------

Rule? (INST -1 "4" "-2")

{-1} sqrt(4) = -2 IFF -2 * -2 = 4

[-2] sqrt(4) = 2 IFF 2 * 2 = 4

|-------

Rule? (GROUND)

Q.E.D.

A Little Example(cont)

M-x spc reveals

Agh.goodness_me has been PROVED.

The proof chain for goodness_me is COMPLETE.

goodness_me depends on the following axioms:

Agh.sqrt_ax

M-x spt reveals

Proof summary for theory Agh

goodness_me.................................proved - complete [O](0.05 s)

Theory totals: 1 formulas, 1 attempted, 1 succeeded (0.05 s)

Agh!!!! What Happened?

Predicate Subtype Abbreviation

T: TYPE

x: VAR T

P(x): bool % or P: pred[T]

ST: TYPE = {t: T | P(t)}

The following is equivalent:

T: TYPE

x: VAR T

P(x): bool % or P: pred[T]

ST: TYPE = (P)

One can use this wherever a type is required:

P(x): bool

f: VAR [(P) -> real]

Some Useful GRIND options

GRIND performs auto-rewrite-defs/theories, auto-rewrite then applies
skolem!, inst?, lift-if, bddsimp, and assert, until nothing works.

(GRIND :if-match NIL) —– turns off instantiation

(GRIND :exclude "foo") —– don’t rewrite ”foo”

(GRIND :defs NIL) —– defns not installed as rewrites

Online Help

http://shemesh.larc.nasa.gov/fm/

http://pvs.csl.sri.com/

pvs-help@csl.sri.com

pvs-bugs@csl.sri.com

Moderated list for topics of general interest to all PVS users:

pvs@csl.sri.com

This list is low-traffic, and contains calls for papers, announcements of
new PVS related papers, and notifications of new releases of PVS. To
subscribe, send message with ‘subscribe’ to pvs-request@csl.sri.com.

At

http://pvs.csl.sri.com/documentation.shtml

PVS Manuals PVS Tutorials PVS Papers PVS Bibliography

Logic Refresher

Given

X = the domain of all animals

and two predicates

cat(x) <--> x is a cat

is finicky(x) <--> the animal x is finicky

translate the following English statements into logic:

All animals that are cats are finicky

There is a cat that is finicky

Logic Refresher (cont.)

All animals that are cats are finicky

∀x : cat(x) ⊃ finicky(x)

There is a cat that is finicky

∃x : cat(x) ∧ finicky(x)

MORAL: Existential quantification almost never involves ⊃ !

Logic Refresher (cont.)

This problem can be avoided in PVS by using predicate subtypes:

X: TYPE

cat(x: X): bool

cats: TYPE = {x: X | cat(x)}

finicky(x: X): bool

l1: LEMMA FORALL (c: cats): finicky(c)

l2: LEMMA EXISTS (c: cats): finicky(c)

But we still need to be aware of what is really going on!

Rewrite “congruence”

{-1} P(x1!1, y1!1, y2!1)

{-2} P(x2!1, y2!1, y2!1)

|-------

{1} f(x1!1 * 200, y1!1 * sqrt(x1!1), sq(x1!1) / y1!1) =

f(x2!1 * 300, y2!1 * exp(y2!1) / x2!1, z2!1)

Rule? (rewrite "congruence")

Found matching substitution:

x2: D gets (x2!1 * 300, y2!1 * exp(y2!1) / x2!1, z2!1),g: [D -> R] gets f,

x1 gets (x1!1 * 200, y1!1 * sqrt(x1!1), sq(x1!1) / y1!1),f gets f,

Rewriting using congruence, matching in *, this simplifies to:

[-1] P(x1!1, y1!1, y2!1)

[-2] P(x2!1, y2!1, y2!1)

|-------

{1} 200 * x1!1 = 300 * x2!1 AND

y1!1 * sqrt(x1!1) = y2!1 * exp(y2!1) / x2!1 AND

sq(x1!1) / y1!1 = z2!1

{2} f(200 * x1!1, y1!1 * sqrt(x1!1), sq(x1!1) / y1!1) =

f(300 * x2!1, y2!1 * exp(y2!1) / x2!1, z2!1)

Decompose-equality

If you have

{-1} P(x!1, y!1, z!1)

|-------

{1} g = h

You can use TAB E or (apply-extensionality :hide? t) to get
[1] FORALL (x: real): g(x) = h(x).

But what if you have {-1} g = h, then you need something else:

{-1} g = h

|-------

{1} P(x!1, y!1, z!1)

Rule? (decompose-equality -1)

Applying decompose-equality,

this simplifies to:

T2 :

{-1} FORALL (x: real): g(x) = h(x)

|-------

[1] P(x!1, y!1, z!1)

TAB Y

You have an old proof that used to work, but now is broken. You run
the proof and end up with

atanh_taylors_prep6.1.1.1.1.1.1.1.1.1.2.1.1.1.1.1.1.1.1.1.1.1.1.1.1 :

[-1] FS11 + FS12 + FS1 + FS23 + FS33 = atanhF(1 + n!1)

[-2] polynomial(FS11 + FS12 + FS1 + FS23, 2 + 2 * n!1) +

polynomial(FS33, 2 + 2 * n!1)

= polynomial(FS11 + FS12 + FS1 + FS23 + FS33, 2 + 2 * n!1)

[-3] polynomial(FS11 + FS12 + FS1, 2 + 2 * n!1) +

polynomial(FS23, 2 + 2 * n!1)

= polynomial(FS11 + FS12 + FS1 + FS23, 2 + 2 * n!1)

|-------

[1] n!1 = 0

{2} polynomial(FS23, 2 + 2 * n!1)(x!1) +

polynomial(FS33, 2 + 2 * n!1)(x!1) +

polynomial(LAMBDA (x_1: nat): FS11(x_1) + FS12(x_1) + FS1(x_1),

2 + 2 * n!1)(x!1)

= polynomial(atanhF(1 + n!1), 2 + 2 * n!1)(x!1)

Rule?

But where in the proof file is this thing?

TAB Y (cont.)

So you open up the proof buffer with M-x edit-proof.
Return to the *pvs* buffer, and put the cursor at the beginning of the
line:

atanh_taylors_prep6.1.1.1.1.1.1.1.1.1.2.1.1.1.1.1.1.1.1.1.1.1.1.1.1

"extensionality"

("f"

"FS11 + FS12 + FS1 + FS23 + FS33"

"g"

"atanhF(1+n!1)"))

(split -1)

(("1"

(replace -1 -2)

(replace -3 -2 rl)

(replace -2 2 rl)

(expand "+" 2)

(propax))

("2"

(hide-all-but (1 2))

(skosimp*)

(expand*

TAB C-u

Suppose you are currently located in the proof buffer at uglyproof.1

after issuing the following proof steps:

(assert)

(expand "sqrt")

(expand "discr")

(assert)

(split -1)

(("1"

(expand "root")

(expand "discr")

(expand "sq")

(bddsimp)

The command

TAB <cntrl>-u

will return you to the sequent at the beginning of the branch: at the
(expand "root") command.

Some Final Hints

• Show all proofs of theory: M-x show-proofs-theory

• What uses this lemma?: M-x usedby-proofs

• Save older proofs too: M-x set-proof-backup-number

• Where is this symbol defined?: M-.or M-,

• You convert a lemma to an axiom and can’t get rid of the
“unfinished” status. Use M-x remove-proof

• See visual graph of your theory structure: M-x x-theory-hierarchy

